250 research outputs found

    Dynamical SimRank search on time-varying networks

    Get PDF
    SimRank is an appealing pair-wise similarity measure based on graph structure. It iteratively follows the intuition that two nodes are assessed as similar if they are pointed to by similar nodes. Many real graphs are large, and links are constantly subject to minor changes. In this article, we study the efficient dynamical computation of all-pairs SimRanks on time-varying graphs. Existing methods for the dynamical SimRank computation [e.g., LTSF (Shao et al. in PVLDB 8(8):838–849, 2015) and READS (Zhang et al. in PVLDB 10(5):601–612, 2017)] mainly focus on top-k search with respect to a given query. For all-pairs dynamical SimRank search, Li et al.’s approach (Li et al. in EDBT, 2010) was proposed for this problem. It first factorizes the graph via a singular value decomposition (SVD) and then incrementally maintains such a factorization in response to link updates at the expense of exactness. As a result, all pairs of SimRanks are updated approximately, yielding (Formula presented.) time and (Formula presented.) memory in a graph with n nodes, where r is the target rank of the low-rank SVD. Our solution to the dynamical computation of SimRank comprises of five ingredients: (1) We first consider edge update that does not accompany new node insertions. We show that the SimRank update (Formula presented.) in response to every link update is expressible as a rank-one Sylvester matrix equation. This provides an incremental method requiring (Formula presented.) time and (Formula presented.) memory in the worst case to update (Formula presented.) pairs of similarities for K iterations. (2) To speed up the computation further, we propose a lossless pruning strategy that captures the “affected areas” of (Formula presented.) to eliminate unnecessary retrieval. This reduces the time of the incremental SimRank to (Formula presented.), where m is the number of edges in the old graph, and (Formula presented.) is the size of “affected areas” in (Formula presented.), and in practice, (Formula presented.). (3) We also consider edge updates that accompany node insertions, and categorize them into three cases, according to which end of the inserted edge is a new node. For each case, we devise an efficient incremental algorithm that can support new node insertions and accurately update the affected SimRanks. (4) We next study batch updates for dynamical SimRank computation, and design an efficient batch incremental method that handles “similar sink edges” simultaneously and eliminates redundant edge updates. (5) To achieve linear memory, we devise a memory-efficient strategy that dynamically updates all pairs of SimRanks column by column in just (Formula presented.) memory, without the need to store all (Formula presented.) pairs of old SimRank scores. Experimental studies on various datasets demonstrate that our solution substantially outperforms the existing incremental SimRank methods and is faster and more memory-efficient than its competitors on million-scale graphs

    Random walks on randomly evolving graphs

    Get PDF
    A random walk is a basic stochastic process on graphs and a key primitive in the design of distributed algorithms. One of the most important features of random walks is that, under mild conditions, they converge to a stationary distribution in time that is at most polynomial in the size of the graph. This fundamental property, however, only holds if the graph does not change over time; on the other hand, many distributed networks are inherently dynamic, and their topology is subjected to potentially drastic changes. In this work we study the mixing (i.e., convergence) properties of random walks on graphs subjected to random changes over time. Specifically, we consider the edge-Markovian random graph model: for each edge slot, there is a two-state Markov chain with transition probabilities p (add a non-existing edge) and q (remove an existing edge). We derive several positive and negative results that depend on both the density of the graph and the speed by which the graph changes

    Application of Graphene within Optoelectronic Devices and Transistors

    Full text link
    Scientists are always yearning for new and exciting ways to unlock graphene's true potential. However, recent reports suggest this two-dimensional material may harbor some unique properties, making it a viable candidate for use in optoelectronic and semiconducting devices. Whereas on one hand, graphene is highly transparent due to its atomic thickness, the material does exhibit a strong interaction with photons. This has clear advantages over existing materials used in photonic devices such as Indium-based compounds. Moreover, the material can be used to 'trap' light and alter the incident wavelength, forming the basis of the plasmonic devices. We also highlight upon graphene's nonlinear optical response to an applied electric field, and the phenomenon of saturable absorption. Within the context of logical devices, graphene has no discernible band-gap. Therefore, generating one will be of utmost importance. Amongst many others, some existing methods to open this band-gap include chemical doping, deformation of the honeycomb structure, or the use of carbon nanotubes (CNTs). We shall also discuss various designs of transistors, including those which incorporate CNTs, and others which exploit the idea of quantum tunneling. A key advantage of the CNT transistor is that ballistic transport occurs throughout the CNT channel, with short channel effects being minimized. We shall also discuss recent developments of the graphene tunneling transistor, with emphasis being placed upon its operational mechanism. Finally, we provide perspective for incorporating graphene within high frequency devices, which do not require a pre-defined band-gap.Comment: Due to be published in "Current Topics in Applied Spectroscopy and the Science of Nanomaterials" - Springer (Fall 2014). (17 pages, 19 figures

    Simulation Methodology for Electron Transfer in CMOS Quantum Dots

    Full text link
    The construction of quantum computer simulators requires advanced software which can capture the most significant characteristics of the quantum behavior and quantum states of qubits in such systems. Additionally, one needs to provide valid models for the description of the interface between classical circuitry and quantum core hardware. In this study, we model electron transport in semiconductor qubits based on an advanced CMOS technology. Starting from 3D simulations, we demonstrate an order reduction and the steps necessary to obtain ordinary differential equations on probability amplitudes in a multi-particle system. We compare numerical and semi-analytical techniques concluding this paper by examining two case studies: the electron transfer through multiple quantum dots and the construction of a Hadamard gate simulated using a numerical method to solve the time-dependent Schrodinger equation and the tight-binding formalism for a time-dependent Hamiltonian

    The extraordinary evolutionary history of the reticuloendotheliosis viruses

    Get PDF
    The reticuloendotheliosis viruses (REVs) comprise several closely related amphotropic retroviruses isolated from birds. These viruses exhibit several highly unusual characteristics that have not so far been adequately explained, including their extremely close relationship to mammalian retroviruses, and their presence as endogenous sequences within the genomes of certain large DNA viruses. We present evidence for an iatrogenic origin of REVs that accounts for these phenomena. Firstly, we identify endogenous retroviral fossils in mammalian genomes that share a unique recombinant structure with REVs—unequivocally demonstrating that REVs derive directly from mammalian retroviruses. Secondly, through sequencing of archived REV isolates, we confirm that contaminated Plasmodium lophurae stocks have been the source of multiple REV outbreaks in experimentally infected birds. Finally, we show that both phylogenetic and historical evidence support a scenario wherein REVs originated as mammalian retroviruses that were accidentally introduced into avian hosts in the late 1930s, during experimental studies of P. lophurae, and subsequently integrated into the fowlpox virus (FWPV) and gallid herpesvirus type 2 (GHV-2) genomes, generating recombinant DNA viruses that now circulate in wild birds and poultry. Our findings provide a novel perspective on the origin and evolution of REV, and indicate that horizontal gene transfer between virus families can expand the impact of iatrogenic transmission events

    The role of multiple marks in epigenetic silencing and the emergence of a stable bivalent chromatin state

    Get PDF
    We introduce and analyze a minimal model of epigenetic silencing in budding yeast, built upon known biomolecular interactions in the system. Doing so, we identify the epigenetic marks essential for the bistability of epigenetic states. The model explicitly incorporates two key chromatin marks, namely H4K16 acetylation and H3K79 methylation, and explores whether the presence of multiple marks lead to a qualitatively different systems behavior. We find that having both modifications is important for the robustness of epigenetic silencing. Besides the silenced and transcriptionally active fate of chromatin, our model leads to a novel state with bivalent (i.e., both active and silencing) marks under certain perturbations (knock-out mutations, inhibition or enhancement of enzymatic activity). The bivalent state appears under several perturbations and is shown to result in patchy silencing. We also show that the titration effect, owing to a limited supply of silencing proteins, can result in counter-intuitive responses. The design principles of the silencing system is systematically investigated and disparate experimental observations are assessed within a single theoretical framework. Specifically, we discuss the behavior of Sir protein recruitment, spreading and stability of silenced regions in commonly-studied mutants (e.g., sas2, dot1) illuminating the controversial role of Dot1 in the systems biology of yeast silencing.Comment: Supplementary Material, 14 page

    Epidemiology and patterns of care for invasive breast carcinoma at a community hospital in Southern India

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Breast cancer incidence in India is on rise. We report epidemiological, clinical and survival patterns of breast cancer patients from community perspective.</p> <p>Methods</p> <p>All breast cancer patients treated at this hospital from July 2000 to July 2005 were included. All had cytological or histological confirmation of breast cancer. TNM guidelines for staging and Immunohistochemistry to assess the receptor status were used. Either lumpectomy with axillary lymph node dissection or Modified radical mastectomy (MRM) was done for operable breast cancer, followed by 6 cycles of adjuvant chemotherapy with FAC or CMF regimens to patients with pT >1 cm or lymph node positive or estrogen receptor negative and radiotherapy to patients after breast conservation surgery, pT size > 5 cm, 4 or more positive nodes and stage IIIB disease. Patients with positive Estrogen receptor or Progesterone receptor were advised Tamoxifene 20 mg per day for 3 years. Descriptive analysis was performed. Independent T test and Chi-square test were used. Overall survival time was computed by Kaplan – Meier method.</p> <p>Results</p> <p>Of 1488 cancer patients, 122 (8.2%) had breast cancer. Of 122 patients, 96.7% had invasive breast carcinoma and 3.3% had sarcoma. 94% came from the rural and semi urban areas. Premenopausal women were 27%. The median age was 50 years. Stage I-6.8%, II-45.8%, III-22%, IV-6.8%, Bilateral breast cancer – 2.5%. The mean pT size was 3.9 cm. ER and PR were positive in 31.6% and 28.1% respectively. MRM was done in 93.8%, while 6.3% patients underwent breast conservation surgery. The mean of the lymph nodes dissected were 3. CMF and FAC regimens were used in 48.8% and 51.2% of patients respectively. FAC group were younger than the CMF group (43.6 yr vs. 54 yrs, P = 0.000). Toxicities were more in FAC than CMF group, alopecia (100% vs. 26.2%), grade2 or more emesis (31.8% vs. 9.2%), grade2 or more fatigue (40.9% vs.19%), anemia (43.1% vs. 16.6%). Median Survival for the cohort was 50.8 months. ER positive patients had better median survival (P = 0.05).</p> <p>Conclusion</p> <p>MRM was the most frequent surgical option. CMF and FAC showed equivalent survival. FAC chemotherapy was more toxic than CMF. ER positive tumors have superior survival. Overall 3 year survival was 70 percent</p

    IRNSS/NavIC and GPS: a single- and dual-system L5 analysis

    Get PDF
    The Indian Regional Navigation Satellite System (IRNSS) has recently (May 2016) become fully operational. In this contribution, for the fully operational IRNSS as a stand-alone system and also in combination with GPS, we provide a first assessment of L5 integer ambiguity resolution and positioning performance. While our empirical analyses are based on the data collected by two JAVAD receivers at Curtin University, Perth, Australia, our formal analyses are carried out for various onshore locations within the IRNSS service area. We study the noise characteristics (carrier-to-noise density, measurement precision, time correlation), the integer ambiguity resolution performance (success rates and ambiguity dilution of precision), and the positioning performance (ambiguity float and ambiguity fixed). The results show that our empirical outcomes are consistent with their formal counterparts and that the GPS L5-data have a lower noise level than that of IRNSS L5-data, particularly in case of the code data. The underlying model in our assessments varies from stand-alone IRNSS (L5) to IRNSS (Formula presented.) GPS (L5), from unconstrained to height-constrained and from kinematic to static. Significant improvements in ambiguity resolution and positioning performance are achievable upon integrating L5-data of IRNSS with GPS

    Access to finance: an empirical analysis

    Get PDF
    YesFinancial access is gradually being recognised as an important input to economic development. Using World Bank (2007) database, this study measures the extent of financial access in developed and developing countries. Further, it develops a new Socio-Economic Development Index, which incorporates financial access. It then compares socio-economic development of various countries as shown by Human Development Index (HDI) alone and by the new index incorporating financial access. The results of the study show that Spain ranks highest in terms of financial access followed by Belgium, Malta and South Korea. In addition, the ranking of countries in terms of HDI changes if financial access is taken into accoun
    • …
    corecore